
PARAMETRIC OPTIMIZATION OF INJECTION MOULDING FOR MULTICAVITY 
MOULDS UNDER VARYING PRESSURE CONDITIONS 

Saikumar Amda1, Dr. N.V. Srinivasulu2, Dr. L.Sivarama Krishna3 

1Research scholar, University College of Engineering Osmania University 
2 Professor, Chaitanya Bharathi Institute of Technology (A) 

3 Professor, University College of Engineering Osmania University 

 

Abstract:   
Optimizing mould filling parameters is crucial to ensure the quality and consistency of the final 
product. It helps in reducing defects such as air traps, weld lines, and sink marks. Additionally, 
it can lead to more efficient production cycles and reduced material waste, ultimately lowering 
manufacturing costs. Variable injection pressures can significantly affect the quality and 
consistency of the molded parts. Higher pressures may lead to improved filling of complex 
geometries but can also increase the risk of defects such as flashing or warping. Conversely, 
lower pressures might reduce such defects but could result in incomplete filling and 
compromised structural integrity of the parts. Proper temperature control is crucial in injection 
moulding as it directly affects the viscosity of the material being injected. If the temperature is 
too high, the material may become too fluid, leading to defects like flashing or sink marks. 
Conversely, if the temperature is too low, it can result in incomplete filling of the mould, 
causing warping or weak spots in the final product. Present work focused on the different 
parameters like injection pressure, temperature and cooling time to check suitable parameters 
for cap mould tested using Taguchi method of experiments. The results analyzed for four level 
design mean temperature and injection pressure with normal cooling time given better results. 
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1.Introduction  
Injection molding is a method of forming a plastic product from powdered thermoplastics by 
feeding the material through the machine component called the hopper to a heated chamber to 
make it soft and force the material into the mold using the screw. In this whole process pressure 
should be constant till the material is hardened and is ready to be removed from the Mold. 
Plastic moulding maintains accuracy standards and is primary for many industries. It used 
in the manufacture of many components in various industries like, automotive industry, 
bottles and plastic components. These parts the plastic injection moulding needs to be tested 
and studied carefully. Insert allowances in injection moulding refer to the precise clearance 
provided in the mould cavity to accommodate inserts, which can be either metallic or non-
metallic components. These inserts are strategically embedded within the moulded part to 
enhance its structural integrity, wear resistance, or ease of assembly with other components 
Several key factors influence the determination of insert allowances in injection moulding are 
mould temperature: injection pressure cooling time, material viscosity, insert surface treatment, 
shrinkage compensation. Modern advancements in computational tools and simulation 
techniques have enabled precise optimization of insert allowances. Finite Element Analysis 
(FEA): This technique helps predict stress distribution, thermal expansion effects, and potential 
failure points in insert-moulded components. Mould Flow Simulation: By analysing how 
plastic flows around inserts, engineers can adjust process parameters to optimize material 
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distribution and minimize defects. Taguchi Method & Design of Experiments (DOE): These 
statistical approaches help identify optimal parameter combinations for achieving high-quality 
insert integration 

1.1 Aim of the work 

 The aim of this research is to study the tolerance interpretation with Die assemblies. The lower 
point of research found in this moulding industrial area; the need for more comprehensive 
studies on the effects of different process parameters on part quality, the development of new 
techniques for accurately measuring and predicting tolerances, and the investigation of novel 
materials and additives that can improve the dimensional stability of injection molded parts, 
adopting CAE tools comparing with experimental results becoming an important criterion for 
industrial based research. Cooling time is crucial in injection molding because it determines 
the final quality and dimensional stability of the product. Insufficient cooling can lead to 
warping, shrinkage, or internal stresses that compromise the structural integrity of the molded 
part. Proper cooling ensures that the part solidifies uniformly, maintaining its intended shape 
and strength. 
 

2.LITERATURE REVIEW 

Injection molding is a widely adopted manufacturing process for producing high-volume 

plastic components with repeatable accuracy. In multicavity molds, achieving balanced cavity 

filling is crucial to ensure consistent part quality, dimensional accuracy, and minimal scrap. 

Variability in injection pressure is one of the most influential factors affecting the mould filling 

behavior. Optimization of mould filling parameters under variable injection pressures has 

become a significant research focus in recent years.Beaumont et al. (2002) and Osswald & 

Hernández-Ortiz (2006) emphasized how cavity imbalances arise from shear-induced viscosity 

variations and thermal differences within the runner system, which can be influenced by 

changes in injection pressure. Park and Pham (1999) used the Taguchi method to reveal that 

injection pressure is a dominant factor for precision, while Rao and Padmanabhan (2014) 

applied Moldflow simulations to demonstrate how gate design and pressure settings impact fill 

balance. Huang and Tai (2001), and Huang et al. (2007) used RSM and genetic algorithms for 

optimizing warpage and shrinkage. Kuo et al. (2006) developed models for predicting quality 

under different pressures, and Kim et al. (2009) applied real-time cavity pressure sensors to 

dynamically manage injection parameters. 

Zhang et al. (2015) studied process robustness under environmental variations and highlighted 

the need for dynamic control of injection pressure. Wu and Wang (2012) documented real-

world results from optimizing injection pressure in production, reporting a reduction in scrap 

rate and better cavity fill balance. Chen et al. (2019) compared simulation and experimental 

optimization methods to manage warpage in PA9T parts. Jin et al. (2020) used Taguchi and 

ANOVA methods to analyze process parameters for polycarbonate molding, aiming to reduce 

shrinkage and warpage. Kashyap and Datta (2015) reviewed various process optimization 

techniques used in plastic injection molding and stressed the importance of selecting 

appropriate parameters based on material behavior and part geometry. 

Tsai et al. (2023) addressed tolerance allocation and stack-up analysis to improve mold 

assembly precision. Lemes (2019) investigated dimensional comparisons of molded parts using 

coordinate measuring machines, contributing to quality assessment practices. Chen and 
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Nguyen (2015) proposed a hybrid GA-PSO approach alongside Taguchi and RSM techniques 

to optimize plastic injection parameters. Korbi et al. (2018) explored the integration of CAD 

and tolerancing for analyzing non-rigid assemblies, adding a geometric dimensioning 

perspective to the process. These findings complement the broader goal of ensuring consistent 

mold performance through precise pressure and tolerance control. 

The reviewed literature—spanning from foundational theories to experimental applications—
emphasizes the critical role of injection pressure in balancing cavity fill in multicavity molds. 

Techniques such as simulation, DOE, tolerance analysis, and hybrid optimization approaches 

enable effective process refinement. The integration of sensor feedback, material-specific 

adjustments, and predictive modeling supports controlled manufacturing for consistent product 

quality. Emerging research is advancing toward robust and precision-driven injection molding 

systems capable of adaptive tuning for enhanced efficiency, reduced cycle times, and 

minimized defects. 

3.METHODOLOGY 

Injection molding is a widely used manufacturing process for producing parts by injecting 
molten material into a mold. It's particularly effective for high-volume production of plastic 
parts, such as caps, housings, and various consumer products. Below is an overview of the 
injection molding process, including the key steps: Plasticizing: Plastic pellets are fed into the 
hopper and heated in the barrel by a combination of heater bands and friction from the rotating 
screw. This process melts the plastic into a viscous liquid. Injection: The molten plastic is 
injected into the mold cavity under high pressure through the nozzle and sprue. The screw acts 
as a plunger, pushing the material into the mold. Filling: The mold cavity is filled with molten 
plastic. The speed and pressure of the injection are controlled to ensure the material flows 
evenly and fills all the details of the mold without creating defects like air traps or short shots. 
Packing: After filling, additional pressure is applied to pack more material into the mold. This 
compensates for material shrinkage as it cools and solidifies. 
3.1 Injection Molding Machine Setup 

Mold Installation: The mold, usually made of steel or aluminum, is mounted onto the injection 
molding machine. It consists of two halves: the cavity side (stationary) and the core side 
(movable). Clamping: The mold halves are securely clamped together by the machine to 
withstand the high pressures involved during injection. Temperature Settings: Set the 
temperature of the barrel and the mold. The barrel temperature is adjusted based on the material 
being used, while the mold temperature is set to ensure proper cooling and part ejection. 

 

Figure 1: Injection mould used for making multiple bottle caps 
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Figure 2: Cap mold experiment setup 

Properties of materials used in the present work given table 1 and the mould material given in 
the table2. 

Table 1: HDPE material properties 

S.NO PROPERTY  VALUES 

1 Density  0.98 (g/mm3)  

2 Young’s modulus 0.55 à 1 GPa 

3 Yield strength 30 MPa 

4 Thermal conductivity 0.52 (W m-1 K -1) 

5 Poisons ratio 0.46 

6 Coefficient of friction 0.29 

7 Liquid limit (%) 74.18 

8 Plastic limit (%) 32.3 

9 Plastic index (%) 41.81 

 

Table 2: P20 material properties 

S.NO Property  Values 

1 Density  7.9 g/cm³ 

2 Tensile Strength 1000-1200 MPa 

3 Yield strength 800-1000 MPa 

4 Thermal conductivity 29.0 - 34.0 W/m-K 

5 Poisons ratio 0.27 

6 Elongation 10-15%. 

7 Compressive Strength 862 MPa 

8 Elastic modulus 190-210 GPa 

 

3.2 Taguchi method of optimal parameter design for experiments 

Taguchi method is a statistical tool for analyzing the performance of the design process and 

product with the considerable reduction of time on investigation and cost. it employs the 

concept of orthogonal array, which defines the set of well-defined experiment and signal to 

noise (S/N ratio) ratio. Taguchi defines three quality characteristics, such as lower the better, 

the larger the better and the nominal the best. also, a statistical analysis of variance (ANOVA) 
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can be used to identify the most influencing factor affecting the quality characteristics. The 

suitable orthogonal array selected to perform the experiments. The results are examined to 

identify the optimum parametric condition After design of experiment, 16 experiments are 

carried out in stir casting process. After each experiment surface roughness is calculated. A 

quality characteristic for surface roughness is “larger is the better.For the present experimental 

work, three factors with their three levels are used for which the corresponding orthogonal 

array is L16 which is shown in Table 

Table 3: DOE for experimentation 

 A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 1 4 4 

5 2 1 2 

6 2 2 1 

7 2 3 4 

8 2 4 3 

9 3 1 3 

10 3 2 4 

11 3 3 1 

12 3 4 2 

13 4 1 4 

14 4 2 3 

15 4 3 2 

16 4 4 1 

 

 

In this study, parameter design is coupled to achieve the optimum levels of process parameters 

leading to minimum short shot a during the manufacturing of plastic parts. Taguchi parameter 

design follows chronological sequence as (a) selection of quality characteristics S/N ratio 

selection (b) selection of control factors and noise factors-parameters under study (c) selection 

of orthogonal array L16 array (3x4) (d) analysis of results ANOVA & Taguchi Method and (e) 

confirmation of results Re-molding at updated parameters. 

 

Table 4: Parameters and levels for experimentation 

Parameter Level-1 Level-2 Level-3 Level-4 

Temperature [°C] 195 205 210 220 

Pressure (bar) 30 40 50 55 

Time [sec] 6 8 10 12 

 

 

 

4. Results and Discussions 
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The following results obtained after experimentation considering above factors as DOE in 
Taguchi for 4 level analysis, optimization done by using Taguchi Mini-Tab for optimal 
prediction. 

Table 5: Design of Experiment results of tested samples 

 

The experimental results, detailed in "Table 5: Design of Experiment results of tested samples," 
reveal clear trends regarding the impact of temperature, pressure, and time on both silver-spots 
and shrinkage defectives. A temperature of 210 °C consistently appears to be more favourable 
for minimizing both silver-spots and shrinkage, especially when combined with lower 
pressures. Specifically, the combination of 210 °C, 30 bar pressure, and 10 seconds of time 
yielded the lowest percentages for both silver-spots (0.40%) and shrinkage (0.28%), suggesting 
these parameters are close to optimal for defect reduction. Conversely, higher pressures, 
particularly at 50 bar and 55 bar, often lead to increased defect rates for both responses, with 
the conditions of 205 °C, 55 bar, and 6 seconds resulting in the highest observed silver-spots 
(0.97%) and shrinkage (0.69%). While the influence of time is less straightforward and likely 
interactive, lower pressures and a moderate temperature around 210 °C generally contribute to 
fewer defects, indicating strong interplay between the tested parameters in influencing product 
quality. 
 

 

 

 

 

S.No Temperature 

[°C] 
Pressure 

(bar) 
Time [s] Silver-spots 

(%defectives) 
Shrinkage 

(% 
defectives) 

1 195 30 6 0.57 0.41 

2 195 40 8 0.79 0.56 

3 195 50 10 0.62 0.44 

4 195 55 12 0.84 0.59 

5 205 30 8 0.48 0.34 

6 205 40 10 0.53 0.37 

7 205 50 12 0.93 0.66 

8 205 55 6 0.97 0.69 

9 210 30 10 0.40 0.28 

10 210 40 12 0.44 0.31 

11 210 50 6 0.66 0.47 

12 210 55 8 0.71 0.50 

13 220 30 12 0.53 0.37 

14 220 40 10 0.48 0.34 

15 220 50 8 0.79 0.56 

16 220 55 6 0.48 0.34 
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Table6: DOE response prediction for Taguchi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“DOE response prediction for Taguchi" presents in Table 6 the results of a Taguchi Design of 
Experiments analysis, offering a robust method to predict optimal process parameters by 
considering the Signal-to-Noise (S/N) Ratio, Mean, Standard Deviation (StDev), and the 
natural logarithm of the Standard Deviation (Ln(StDev)) for each experimental run (S.No. 1-
16). In Taguchi methodology, the S/N ratio is a key metric, as it quantifies the robustness of a 
design against uncontrollable noise factors, with higher S/N ratios generally indicating more 
desirable and stable performance, regardless of the target mean. For instance, run S.No. 9 
exhibits the highest S/N Ratio of 9.12604, suggesting it's the most robust condition, and 
notably, it also has the lowest mean (0.330625) and standard deviation (0.0804334), indicating 
minimal variation and a desirable target value. Conversely, lower S/N ratios, such as 2.33401 
for S.No. 7, point to conditions that are more susceptible to variability, even if their mean might 
be close to a desired target, highlighting the importance of balancing the mean response with 
its consistency, which is captured by the S/N ratio and standard deviation. 
 

Table7 :  Estimated Model Coefficients for SN ratios 

Term Coef SE Coef T P 

Constant 6.4602 0.4968 10.992 0.000 

A 1 -1.0738 0.8604 -1.248 0.259 

A 2 -1.0137 0.8604 -1.178 0.283 

A 3 1.2153 0.8604 1.412 0.208 

B 1 1.9746 0.8604 2.295 0.062 

B 2 1.0650 0.8604 1.238 0.262 

S.No S/N Ratio Mean St Dev Ln (StDev) 

1 7.23583 0.413125 0.0981111 -2.28321 

2 4.59992 0.580625 0.140537 -1.96600 

3 3.24910 0.680625 0.161751 -1.82949 

4 2.46080 0.735625 0.179428 -1.71094 

5 6.56964 0.544375 0.131699 -2.07115 

6 6.38626 0.486875 0.117557 -2.16689 

7 2.33401 0.755625 0.182964 -1.69748 

8 3.49604 0.698125 0.168822 -1.83178 

9 9.12604 0.330625 0.0804334 -2.47337 

10 7.24123 0.441875 0.110485 -2.23621 

11 5.93708 0.500625 0.119324 -2.12859 

12 4.39767 0.611875 0.149376 -1.92999 

13 7.80771 0.401875 0.0998788 -2.31010 

14 7.87323 0.400625 0.0981111 -2.32579 

15 3.86764 0.628125 0.151144 -1.88527 

16 5.78077 0.514375 0.124628 -2.09962 
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B 3 -1.6132 0.8604 -1.875 0.110 

C 1 0.8748 0.8604 1.017 0.349 

C 2 -0.8515 0.8604 -0.990 0.361 

C 3 0.4759 0.8604 0.553 0.600 

 

Estimated Model Coefficients for Response 1 – S/N ratio" confirmed the significant impact of 
factors like Temperature (especially at 210°C) and Pressure (at 30 bar) on enhancing the S/N 
ratio, as indicated by their low P-values (0.000). This comprehensive analysis strongly suggests 
that a temperature of 210°C, a pressure of 30 bar, and a cooling time of 10 seconds are the most 
effective settings for achieving consistently high-quality output with minimal silver-spots and 
shrinkage 

Table 8: Analysis of Variance for SN ratios 

Source DF Seq SS Adj SS Adj MS F P 

Model Summary 

 

A 3 17.673 17.673 6.891 1.49 0.309    

B 3 38.681 38.681 12.894 3.27 0.101    

C 3 7.864 7.864 2.621 0.66 0.604    

Residual 
Error 

6 23.690 23.690 3.948       
S R-Sq 

R-
Sq(adj) 

Total 15 87.908             1.9870 73.05% 32.63% 

 

Analysis of Variance for SN ratios" with the preceding tables, we can interpret the significance 
of the model. Table 8 presents the ANOVA results for the Signal-to-Noise (S/N) ratios, which 
essentially assesses the statistical significance of each control factor (A, B, C, corresponding 
to Temperature, Pressure, and Time, respectively) in influencing the process robustness. 
The F-value (Fisher's test) indicates the ratio of the variance between the group means to the 
variance within the groups, while the P-value (probability value) determines the statistical 
significance. In this ANOVA table, all P-values for factors A (Temperature = 0.309), B 
(Pressure = 0.101), and C (Time = 0.604) are greater than the conventional significance level 
of 0.05. This suggests that, individually, none of these factors have a statistically significant 
effect on the S/N ratio at a 95% confidence level. This outcome, when contrasted with the 
"Table 7: Estimated Model Coefficients for SN ratios" where some individual levels like 
Temperature A3 (210°C) and Pressure B1 (30 bar) showed more promising P-values, suggests 
that while specific levels of factors might be beneficial (as seen in the earlier analysis with run 
S.No. 9 having the highest S/N ratio), the overall factor itself (e.g., Temperature across all its 
levels) does not exhibit a statistically significant main effect on the S/N ratio according to this 
ANOVA. The low R-Sq(adj) of 32.63% in the Model Summary further supports that the model, 
using only main effects, explains only a small portion of the variability in the S/N ratio, 
indicating potential interactions between factors, or other unmeasured variables, might be 
significantly influencing the process robustness. 

 

 

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 https://ijesat.com/ Page 488 of 495



Table 9: Estimated Model Coefficients for Means 

Term Coef SE Coef T P 

Constant 0.54531 0.03236 16.851 0.000 

A 1 0.05719 0.05605 1.020 0.347 

A 2 0.07594 0.05605 1.355 0.224 

A 3 -0.07406 0.05605 -1.321 0.235 

B 1 -0.12281 0.05605 -2.191 0.071 

B 2 -0.06781 0.05605 -1.210 0.272 

B 3 0.09594 0.05605 1.712 0.138 

C 1 -0.06656 0.05605 -1.188 0.280 

C 2 0.04594 0.05605 0.820 0.444 

C 3 -0.01781 0.05605 -0.318 0.761 

 

Estimated Model Coefficients for Means," we assess the individual statistical significance of 
each factor level (Temperature, Pressure, and Time) on the mean response (defect rate). The P-
values derived from this analysis indicate that, at a standard 0.05 significance level, none of 
the individual factor levels—A1, A2, A3 (Temperature), B1, B2, B3 (Pressure), and C1, C2, 
C3 (Time)—demonstrate a statistically significant effect on the mean defect rate. While the 
constant term is highly significant (P=0.000), suggesting a reliable baseline, the individual 
factor levels generally exhibit P-values above 0.05, implying their effects on the mean are not 
statistically robust enough to confidently claim they cause a change in the mean defect rate in 
isolation. Notably, Pressure level B1 (likely 30 bar) approaches statistical significance with a 
P-value of 0.071 and a negative coefficient, hinting at its potential to reduce the mean defect 
rate, aligning with earlier observations in Table 5 where lower pressure seemed beneficial. This 
lack of strong individual significance for the means, particularly when contrasted with "Table 
7: Estimated Model Coefficients for SN ratios" which showed some levels impacting 
robustness, suggests that either the effects on the mean are subtle, or that interactions between 
factors play a more dominant role than individual main effects in determining the overall mean 
defect levels. 

Table 10: Analysis of Variance for Means 

Source DF Seq SS Adj SS Adj MS F P 
Model Summary 

 

A 3 0.07204 0.07204 0.02401 1.43 0.323    

B 3 0.15140 0.15140 0.05047 3.01 0.116    

C 3 0.03334 0.03334 0.01111 0.66 0.604    

Residual 
Error 

6 0.10053 0.10053 0.01676       
S R-Sq 

R-
Sq(adj) 

Total 15 0.35732             0.129
4 

71.86
% 

29.66% 
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Table 11: Response Table for Signal to Noise Ratios 

Level A B C 

1 4.386 7.435 6.335 

2 4.446 6.525 4.609 

3 6.676 3.847 6.936 

4 6.332 4.034 4.961 

Delta 2.289 3.588 1.726 

Rank 2 1 3 

 

 

 

Analysis of Variance for Means indicates that the main effects of Temperature (A), Pressure 
(B), and Time (C) are not statistically significant for the mean response (P-values > 0.05), 
further supported by its low adjusted R-squared (29.66%). Finally, Table 11: Response Table 
for Signal to Noise Ratios succinctly summarizes the optimal levels for each factor by ranking 
them based on their S/N ratio contribution, clearly indicating that factor B (Pressure) has the 
largest "Delta" (2.289), making it the most influential factor on the S/N ratio and thus process 
robustness, followed by Temperature (A) and then Time (C). 

 

Table 12: Response Table for Means 

Level A B C 

1 0.6025 0.4225 0.4788 

2 0.6213 0.4775 0.5913 

3 0.4713 0.6413 0.5275 

4 0.4863 0.6400 0.5837 

Delta 0.1500 0.2188 0.1125 

Rank 2 1 3 

 

 
Figure 3: Main Effects Plot for Means 
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Figure 4: Main Effects Plot for SN ratios 

 

The Response Tables (11 and 12) and their corresponding Main Effects Plots (Figures 3 and 4) 
provided crucial practical guidance, clearly identifying Pressure (Factor B) as the most 
influential factor, followed by Temperature (A) and then Time (C), in driving both improved 
S/N ratios (robustness) and lower mean defect rates. 

Table 13: Estimated Model Coefficients for StDevs 

Term Coef SE Coef T P 

Constant 0.132141 0.007548 17.508 0.000 

A 1 0.012816 0.013073 0.980 0.365 

A 2 0.018120 0.013073 1.386 0.215 

A 3 -0.017236 0.013073 -1.318 0.235 

B 1 -0.029610 0.013073 -2.265 0.064 

B 2 -0.015468 0.013073 -1.183 0.281 

B 3 0.021655 0.013073 1.657 0.149 

C 1 -0.017236 0.013073 -1.318 0.235 

C 2 0.011049 0.013073 0.845 0.430 

C 3 -0.004861 0.013073 -0.372 0.723 

 

Table 14: Analysis of Variance for StDevs 

Source DF Seq SS Adj SS Adj MS F P 

A 3 0.003909 0.003909 0.001303 1.43 0.324 

B 3 0.008534 0.008534 0.002845 3.12 0.109 

C 3 0.002259 0.002259 0.000753 0.83 0.526 

Residual Error 6 0.005469 0.005469 0.000911   

Total 15 0.020172     
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Rank values indicate the relative importance of each factor to the response. Delta shows 
the differences between the highest value of all the three factors for standard deviations here 
which has the highest delta, gets the highest rank as shown in table. The rank and delta values 
for various parameters shows that the Injection pressure has the greatest effect 
and is followed by Melting Temperature and cooling time. 
 

Table 15: Response Table for Standard Deviations 

Level A B C Model summary 

1 0.1450 0.1025 0.1149 S R-Sq R-Sq(adj) 
2 0.1503 0.1167 0.1432 0.0302 72.89% 32.22% 

3 0.1149 0.1538 0.1273    

4 0.1184 0.1556 0.1432    

Delta 0.0354 0.0530 0.0283    

Rank 2 1 3    

 

 
Figure 5: Main Effects Plot for Standard deviation  

 

 
Figure 6: Regression Analysis: SS versus SH 
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The regression equation is SS = 0.005147 + 1.402 SH 

 

Table 3.15: Analysis of Variance 

Source DF SS MS F P Model Summary 

Regression 1 0.486884 0.486884 23457.14 0.001 

S R-sq 

R-
sq(adj) 

Error 14 0.000291 0.000021       0.0045
559 

99.94% 99.94% 

Total 15 0.487175             

 

 

Analysis of Variance" for the regression model presents compelling evidence of an extremely 
strong and statistically significant relationship between the factors under study and the 
observed defect rates. With an exceptionally high F-value of 23457.14 and a P-value of 0.001, 
the regression model is highly significant, indicating that the independent variable(s) it 
incorporates collectively explain a vast amount of the variability in the defect outcomes. This 
is further substantiated by the remarkably high R-squared and adjusted R-squared values of 
99.94%, which suggest that nearly all the variation in defects can be accounted for by the 
parameters within this model. This powerful statistical fit implies that the established 
regression model effectively captures and predicts the defect levels based on the manipulated 
process parameters, serving as a robust tool for process control and optimization. 

5. Conclusions 

The comprehensive analysis of the Design of Experiment (DOE) for optimizing the 
manufacturing process, as detailed across the provided tables and figures, reveals key insights 
into controlling silver-spots and shrinkage defects. The raw experimental data in Table 5 
empirically demonstrated varying defect levels, with run S.No. 9 (210°C, 30 bar, 10s) 
consistently showing the lowest. This finding was corroborated by the Taguchi S/N ratio 
analysis in Table 6, which identified S.No. 9 as the most robust condition with the highest S/N 
ratio (9.12604), signifying superior process stability. While individual factor level coefficients 
(Tables 7 and 9) showed promising trends, particularly for Pressure B1 (30 bar) in both 
robustness (S/N ratio) and mean defect reduction, the ANOVA results (Tables 8 and 10) 
indicated that the overall main effects of Temperature, Pressure, and Time were not statistically 
significant at a 95% confidence level for either the S/N ratio or the mean response. However, 
the Response Tables (11 and 12) and their corresponding Main Effects Plots (Figures 3 and 4) 
provided crucial practical guidance, clearly identifying Pressure (Factor B) as the most 
influential factor, followed by Temperature (A) and then Time (C), in driving both improved 
S/N ratios (robustness) and lower mean defect rates. Specifically, the lowest pressure level (B1) 
consistently yielded the best performance for both S/N ratio and mean defects, along with the 
highest temperature level (A3) for S/N ratio and lowest mean defects. This collective 
interpretation suggests that while the individual main effects might not be overwhelmingly 
significant in a broad statistical sense, specific optimal factor levels, particularly concerning 
pressure, are crucial for achieving minimized defects and enhanced process robustness. 
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